Bayes Method


Calculation

P(cause|effect 1, .....effect n) = P(cause) * II P(effect/cause)


Example:

A small training set
No Attributes Class
Outlook Temperature Humidity Windy
1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

Suppose that N is Not Win and P is Win

1. Find the probability P(not win | sunny, hot, high, false)

2. Find the probability P( win | sunny, hot, high, false)


Solution:

1 Calculation of P(not win| sunny, hot, high, false)

P(sunny| not_win):

P(hot| not_win):

P(high| not_win):

P(false| not_win):

P(not win| sunny, hot, high, false):

The result of the probability calculation P(not win| sunny, hot, high, false) is

2 Calculation of P(win| sunny, hot, high, false)

P(sunny| win):

P(hot| win):

P(high| win):

P(false| win):

P(win| sunny, hot, high, false):

The result of the probability calculation P(win| sunny, hot, high, false) is

Other examples without cause only effect:

Result of outlook=Sunny, temperature=hot:

Result of outlook=Sunny, temperature=cool:

Result of outlook=Sunny, temperature=mild:

Result of outlook=Rain, temperature=hot:

Result of outlook=Rain, temperature=cool:

Result of outlook=Rain, temperature=mild:


Bayes Method